Logo Search packages:      
Sourcecode: jpegjudge version File versions  Download package

estim.c

#include <limits.h>

#include "estim.h"

/*****************************************************************************/
/** dct routines **/
/*****************************************************************************/

/*
 * Heavily modified by Marc Lehmann <pcg@goof.com>
 *
 * Copyright (C) 1994-1996, Thomas G. Lane.
 * This file is part of the Independent JPEG Group's software.
 * For conditions of distribution and use, see the accompanying README-jpeg6a file.
 *
 * This include file contains common declarations for the forward and
 * inverse DCT modules.  These declarations are private to the DCT managers
 * (jcdctmgr.c, jddctmgr.c) and the individual DCT algorithms.
 * The individual DCT algorithms are kept in separate files to ease 
 * machine-dependent tuning (e.g., assembly coding).
 */

/*
 * A forward DCT routine is given a pointer to a work area of type DCTELEM[];
 * the DCT is to be performed in-place in that buffer.
 * The DCT inputs are expected to be signed (range +-CENTERJSAMPLE).
 * The DCT outputs are returned scaled up by a factor of 8; they therefore
 * have a range of +-8K for 8-bit data, +-128K for 12-bit data.  This
 * convention improves accuracy in integer implementations and saves some
 * work in floating-point ones.
 */

typedef int DCTELEM;          /* 16 or 32 bits is fine */

#define DCTSIZE         8
#define DCTLEN          (DCTSIZE*DCTSIZE)
#define CENTERJSAMPLE   128
#define DCTRANGE  (8*8*CENTERJSAMPLE)

/*
 * Macros for handling fixed-point arithmetic; these are used by many
 * but not all of the DCT/IDCT modules.
 *
 * All values are expected to be of type i32.
 * Fractional constants are scaled left by CONST_BITS bits.
 * CONST_BITS is defined within each module using these macros,
 * and may differ from one module to the next.
 */

#define ONE ((i32) 1)
#define CONST_SCALE (ONE << CONST_BITS)

/* Convert a positive real constant to an integer scaled by CONST_SCALE.
 * Caution: some C compilers fail to reduce "FIX(constant)" at compile time,
 * thus causing a lot of useless floating-point operations at run time.
 */

#define FIX(x)    ((i32) ((x) * CONST_SCALE + 0.5))

/* Descale and correctly round an i32 value that's scaled by N bits.
 * We assume a right rounds towards minus infinity, so adding
 * the fudge factor is correct for either sign of X.
 */

#define DESCALE(x,n)  (((x) + (ONE << ((n)-1))) >> n)

/* Multiply an i32 variable by an i32 constant to yield an i32 result.
 * This macro is used only when the two inputs will actually be no more than
 * 16 bits wide, so that a 16x16->32 bit multiply can be used instead of a
 * full 32x32 multiply.  This provides a useful speedup on many machines.
 * Unfortunately there is no way to specify a 16x16->32 multiply portably
 * in C, but some C compilers will do the right thing if you provide the
 * correct combination of casts.
 */

#define MULTIPLY16C16(var,const)  (((i16) (var)) * ((i16) (const)))

/* Same except both inputs are variables. */

#define MULTIPLY16V16(var1,var2)  (((i16) (var1)) * ((i16) (var2)))

/* Multiply an i32 variable by an i32 constant to yield an i32 result.
 * For 8-bit samples with the recommended scaling, all the variable
 * and constant values involved are no more than 16 bits wide, so a
 * 16x16->32 bit multiply can be used instead of a full 32x32 multiply.
 * For 12-bit samples, a full 32-bit multiplication will be needed.
 */

#define MULTIPLY(var,const)  MULTIPLY16C16(var,const)

/*
 * The divisors are all 8.
 */

/*
 * Perform forward DCT on one or more blocks of a component.
 *
 * The input samples are taken from the sample_data[] array starting at
 * position start_row/start_col, and moving to the right for any additional
 * blocks. The quantized coefficients are returned in coef_blocks[].
 */

/*
 * This file contains a slow-but-accurate integer implementation of the
 * forward DCT (Discrete Cosine Transform).
 *
 * A 2-D DCT can be done by 1-D DCT on each row followed by 1-D DCT
 * on each column.  Direct algorithms are also available, but they are
 * much more complex and seem not to be any faster when reduced to code.
 *
 * This implementation is based on an algorithm described in
 *   C. Loeffler, A. Ligtenberg and G. Moschytz, "Practical Fast 1-D DCT
 *   Algorithms with 11 Multiplications", Proc. Int'l. Conf. on Acoustics,
 *   Speech, and Signal Processing 1989 (ICASSP '89), pp. 988-991.
 * The primary algorithm described there uses 11 multiplies and 29 adds.
 * We use their alternate method with 12 multiplies and 32 adds.
 * The advantage of this method is that no data path contains more than one
 * multiplication; this allows a very simple and accurate implementation in
 * scaled fixed-point arithmetic, with a minimal number of shifts.
 */

/*
 * The poop on this scaling stuff is as follows:
 *
 * Each 1-D DCT step produces outputs which are a factor of sqrt(N)
 * larger than the true DCT outputs.  The final outputs are therefore
 * a factor of N larger than desired; since N=8 this can be cured by
 * a simple right shift at the end of the algorithm.  The advantage of
 * this arrangement is that we save two multiplications per 1-D DCT,
 * because the y0 and y4 outputs need not be divided by sqrt(N).
 * In the IJG code, this factor of 8 is removed by the quantization step
 * (in jcdctmgr.c), NOT in this module.
 *
 * We have to do addition and subtraction of the integer inputs, which
 * is no problem, and multiplication by fractional constants, which is
 * a problem to do in integer arithmetic.  We multiply all the constants
 * by CONST_SCALE and convert them to integer constants (thus retaining
 * CONST_BITS bits of precision in the constants).  After doing a
 * multiplication we have to divide the product by CONST_SCALE, with proper
 * rounding, to produce the correct output.  This division can be done
 * cheaply as a right shift of CONST_BITS bits.  We postpone shifting
 * as long as possible so that partial sums can be added together with
 * full fractional precision.
 *
 * The outputs of the first pass are scaled up by PASS1_BITS bits so that
 * they are represented to better-than-integral precision.  These outputs
 * require BITS_IN_JSAMPLE + PASS1_BITS + 3 bits; this fits in a 16-bit word
 * with the recommended scaling.  (For 12-bit sample data, the intermediate
 * array is i32 anyway.)
 *
 * To avoid overflow of the 32-bit intermediate results in pass 2, we must
 * have BITS_IN_JSAMPLE + CONST_BITS + PASS1_BITS <= 26.  Error analysis
 * shows that the values given below are the most effective.
 */

#define CONST_BITS  13
#define PASS1_BITS  2

/* Some C compilers fail to reduce "FIX(constant)" at compile time, thus
 * causing a lot of useless floating-point operations at run time.
 * To get around this we use the following pre-calculated constants.
 * If you change CONST_BITS you may want to add appropriate values.
 * (With a reasonable C compiler, you can just rely on the FIX() macro...)
 */

#define FIX_0_298631336  FIX(0.298631336)
#define FIX_0_390180644  FIX(0.390180644)
#define FIX_0_541196100  FIX(0.541196100)
#define FIX_0_765366865  FIX(0.765366865)
#define FIX_0_899976223  FIX(0.899976223)
#define FIX_1_175875602  FIX(1.175875602)
#define FIX_1_501321110  FIX(1.501321110)
#define FIX_1_847759065  FIX(1.847759065)
#define FIX_1_961570560  FIX(1.961570560)
#define FIX_2_053119869  FIX(2.053119869)
#define FIX_2_562915447  FIX(2.562915447)
#define FIX_3_072711026  FIX(3.072711026)

/*
 * Perform the forward DCT on one block of samples.
 */

static void
dct (DCTELEM *data)
{
  i32 tmp0, tmp1, tmp2, tmp3, tmp4, tmp5, tmp6, tmp7;
  i32 tmp10, tmp11, tmp12, tmp13;
  i32 z1, z2, z3, z4, z5;
  DCTELEM *dataptr;
  int ctr;

  /* Pass 1: process rows. */
  /* Note results are scaled up by sqrt(8) compared to a true DCT; */
  /* furthermore, we scale the results by 2**PASS1_BITS. */

  dataptr = data;
  for (ctr = DCTSIZE-1; ctr >= 0; ctr--) {
    tmp0 = dataptr[0] + dataptr[7];
    tmp7 = dataptr[0] - dataptr[7];
    tmp1 = dataptr[1] + dataptr[6];
    tmp6 = dataptr[1] - dataptr[6];
    tmp2 = dataptr[2] + dataptr[5];
    tmp5 = dataptr[2] - dataptr[5];
    tmp3 = dataptr[3] + dataptr[4];
    tmp4 = dataptr[3] - dataptr[4];
    
    /* Even part per LL&M figure 1 --- note that published figure is faulty;
     * rotator "sqrt(2)*c1" should be "sqrt(2)*c6".
     */
    
    tmp10 = tmp0 + tmp3;
    tmp13 = tmp0 - tmp3;
    tmp11 = tmp1 + tmp2;
    tmp12 = tmp1 - tmp2;
    
    dataptr[0] = (DCTELEM) ((tmp10 + tmp11) << PASS1_BITS);
    dataptr[4] = (DCTELEM) ((tmp10 - tmp11) << PASS1_BITS);
    
    z1 = MULTIPLY(tmp12 + tmp13, FIX_0_541196100);
    dataptr[2] = (DCTELEM) DESCALE(z1 + MULTIPLY(tmp13, FIX_0_765366865),
                           CONST_BITS-PASS1_BITS);
    dataptr[6] = (DCTELEM) DESCALE(z1 + MULTIPLY(tmp12, - FIX_1_847759065),
                           CONST_BITS-PASS1_BITS);
    
    /* Odd part per figure 8 --- note paper omits factor of sqrt(2).
     * cK represents cos(K*pi/16).
     * i0..i3 in the paper are tmp4..tmp7 here.
     */
    
    z1 = tmp4 + tmp7;
    z2 = tmp5 + tmp6;
    z3 = tmp4 + tmp6;
    z4 = tmp5 + tmp7;
    z5 = MULTIPLY(z3 + z4, FIX_1_175875602); /* sqrt(2) * c3 */
    
    tmp4 = MULTIPLY(tmp4, FIX_0_298631336); /* sqrt(2) * (-c1+c3+c5-c7) */
    tmp5 = MULTIPLY(tmp5, FIX_2_053119869); /* sqrt(2) * ( c1+c3-c5+c7) */
    tmp6 = MULTIPLY(tmp6, FIX_3_072711026); /* sqrt(2) * ( c1+c3+c5-c7) */
    tmp7 = MULTIPLY(tmp7, FIX_1_501321110); /* sqrt(2) * ( c1+c3-c5-c7) */
    z1 = MULTIPLY(z1, - FIX_0_899976223); /* sqrt(2) * (c7-c3) */
    z2 = MULTIPLY(z2, - FIX_2_562915447); /* sqrt(2) * (-c1-c3) */
    z3 = MULTIPLY(z3, - FIX_1_961570560); /* sqrt(2) * (-c3-c5) */
    z4 = MULTIPLY(z4, - FIX_0_390180644); /* sqrt(2) * (c5-c3) */
    
    z3 += z5;
    z4 += z5;
    
    dataptr[7] = (DCTELEM) DESCALE(tmp4 + z1 + z3, CONST_BITS-PASS1_BITS);
    dataptr[5] = (DCTELEM) DESCALE(tmp5 + z2 + z4, CONST_BITS-PASS1_BITS);
    dataptr[3] = (DCTELEM) DESCALE(tmp6 + z2 + z3, CONST_BITS-PASS1_BITS);
    dataptr[1] = (DCTELEM) DESCALE(tmp7 + z1 + z4, CONST_BITS-PASS1_BITS);
    
    dataptr += DCTSIZE;       /* advance pointer to next row */
  }

  /* Pass 2: process columns.
   * We remove the PASS1_BITS scaling, but leave the results scaled up
   * by an overall factor of 8.
   */

  dataptr = data;
  for (ctr = DCTSIZE-1; ctr >= 0; ctr--) {
    tmp0 = dataptr[DCTSIZE*0] + dataptr[DCTSIZE*7];
    tmp7 = dataptr[DCTSIZE*0] - dataptr[DCTSIZE*7];
    tmp1 = dataptr[DCTSIZE*1] + dataptr[DCTSIZE*6];
    tmp6 = dataptr[DCTSIZE*1] - dataptr[DCTSIZE*6];
    tmp2 = dataptr[DCTSIZE*2] + dataptr[DCTSIZE*5];
    tmp5 = dataptr[DCTSIZE*2] - dataptr[DCTSIZE*5];
    tmp3 = dataptr[DCTSIZE*3] + dataptr[DCTSIZE*4];
    tmp4 = dataptr[DCTSIZE*3] - dataptr[DCTSIZE*4];
    
    /* Even part per LL&M figure 1 --- note that published figure is faulty;
     * rotator "sqrt(2)*c1" should be "sqrt(2)*c6".
     */
    
    tmp10 = tmp0 + tmp3;
    tmp13 = tmp0 - tmp3;
    tmp11 = tmp1 + tmp2;
    tmp12 = tmp1 - tmp2;
    
    dataptr[DCTSIZE*0] = (DCTELEM) DESCALE(tmp10 + tmp11, PASS1_BITS);
    dataptr[DCTSIZE*4] = (DCTELEM) DESCALE(tmp10 - tmp11, PASS1_BITS);
    
    z1 = MULTIPLY(tmp12 + tmp13, FIX_0_541196100);
    dataptr[DCTSIZE*2] = (DCTELEM) DESCALE(z1 + MULTIPLY(tmp13, FIX_0_765366865),
                                 CONST_BITS+PASS1_BITS);
    dataptr[DCTSIZE*6] = (DCTELEM) DESCALE(z1 + MULTIPLY(tmp12, - FIX_1_847759065),
                                 CONST_BITS+PASS1_BITS);
    
    /* Odd part per figure 8 --- note paper omits factor of sqrt(2).
     * cK represents cos(K*pi/16).
     * i0..i3 in the paper are tmp4..tmp7 here.
     */
    
    z1 = tmp4 + tmp7;
    z2 = tmp5 + tmp6;
    z3 = tmp4 + tmp6;
    z4 = tmp5 + tmp7;
    z5 = MULTIPLY(z3 + z4, FIX_1_175875602); /* sqrt(2) * c3 */
    
    tmp4 = MULTIPLY(tmp4, FIX_0_298631336); /* sqrt(2) * (-c1+c3+c5-c7) */
    tmp5 = MULTIPLY(tmp5, FIX_2_053119869); /* sqrt(2) * ( c1+c3-c5+c7) */
    tmp6 = MULTIPLY(tmp6, FIX_3_072711026); /* sqrt(2) * ( c1+c3+c5-c7) */
    tmp7 = MULTIPLY(tmp7, FIX_1_501321110); /* sqrt(2) * ( c1+c3-c5-c7) */
    z1 = MULTIPLY(z1, - FIX_0_899976223); /* sqrt(2) * (c7-c3) */
    z2 = MULTIPLY(z2, - FIX_2_562915447); /* sqrt(2) * (-c1-c3) */
    z3 = MULTIPLY(z3, - FIX_1_961570560); /* sqrt(2) * (-c3-c5) */
    z4 = MULTIPLY(z4, - FIX_0_390180644); /* sqrt(2) * (c5-c3) */
    
    z3 += z5;
    z4 += z5;
    
    dataptr[DCTSIZE*7] = (DCTELEM) DESCALE(tmp4 + z1 + z3,
                                 CONST_BITS+PASS1_BITS);
    dataptr[DCTSIZE*5] = (DCTELEM) DESCALE(tmp5 + z2 + z4,
                                 CONST_BITS+PASS1_BITS);
    dataptr[DCTSIZE*3] = (DCTELEM) DESCALE(tmp6 + z2 + z3,
                                 CONST_BITS+PASS1_BITS);
    dataptr[DCTSIZE*1] = (DCTELEM) DESCALE(tmp7 + z1 + z4,
                                 CONST_BITS+PASS1_BITS);
    
    dataptr++;                /* advance pointer to next column */
  }
}

/*****************************************************************************/
/** estimate functions **/
/*****************************************************************************/

void
estimate_init (estimate_stat *s)
{
  s->pixels =
  s->histogram = 0;
}

void
process_blocks (estimate_stat *s, u8 *data, int width, int channels)
{
  DCTELEM block[DCTLEN];

  int color = channels;
  int xoff = (((unsigned) width) / DCTSIZE - 1) * DCTSIZE;

  while (color)
    {
      color--;
      while (xoff >= 0)
      {
        int x, y;
        DCTELEM *p = block;

        for (x = DCTSIZE - 1; x >= 0; x--)
          for (y = DCTSIZE - 1; y >= 0; y--)
            *p++ = data[(x + xoff + y * width) * channels] - CENTERJSAMPLE;

        dct (block);

        p = block + DCTLEN;
        while (p-- > block)
          if (*p >= -2 && *p <= 2)
            s->histogram++;

        s->pixels += DCTLEN;
        xoff -= DCTSIZE;
      }
    }
}

int
estimate_quality (estimate_stat *s)
{
  while (s->histogram > ULONG_MAX/1000)
    {
      s->pixels    >>= 1;
      s->histogram >>= 1;
    }
  
  return 1000 - s->histogram * 1000 / s->pixels;
}


Generated by  Doxygen 1.6.0   Back to index